Name:_____

Class:_____

Trial HSC Examination 2024

Mathematics Extension 1

General Instructions

- Reading time 10 minutes.
- Working time 120 minutes.
- Only NESA-approved calculators may be used.
- Write using blue or black pen.
- All necessary working should be shown in all questions.
- Write your student number at the top of every answer sheet.

Total marks – 70

Attempt all questions.

Section A – Answer on the Multiple-Choice Answer Sheet.

Section B - Start each question on a new sheet of paper.

NESA Reference Sheet is provided.

Z table for unit normal distribution is provided.

This paper MUST OT be removed from the examination room

Section A Multiple-Choice (10 Marks)

QUESTION 1

X is defined as a random variable such that $X \sim Bin(30, 0.4)$. Which of the following is E(X) and Var(X)?

- A. E(X) = 12, Var(X) = 7.2
- B. E(X) = 18, $Var(X) = \sqrt{7.2}$
- C. E(X) = 18, Var(X) = 7.2
- D. E(X) = 12, $Var(X) = \sqrt{7.2}$

QUESTION 2

Which of the following is the range of $tan^{-1}(sin x)$?

- A. $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ B. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
- L 4 4]
- C. $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- D. $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

QUESTION 3

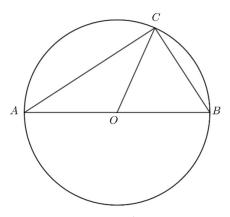
Which of the following gives the number of values of x in the interval $[0, 5\pi]$ that will satisfy the following equation: $3\sin^2 x - 7\sin x + 2 = 0$?

- A. 0
- B. 5
- C. 6
- D. 10

QUESTION 4

Let $f(x) = x^3$ where $x \in \{0, 1, 2, 3\}$. Which of the following is the domain of $f^{-1}(x)$?

A. $\{0, 1, \sqrt[3]{8}, \sqrt[3]{27}\}$ B. $\{0, 1, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{27}}\}$ C. $\{0, 1, 8, 27\}$ D. $\{0, 1, \frac{1}{8}, \frac{1}{27}\}$


QUESTION 5

Which of the following has the same solution as that of $\frac{3}{2-x} > 2$?

- A. $2x 1 \ge 0$
- B. (x-2)(2x-1) > 0
- C. (x-2)(2x-1) < 0
- D. None of the above.

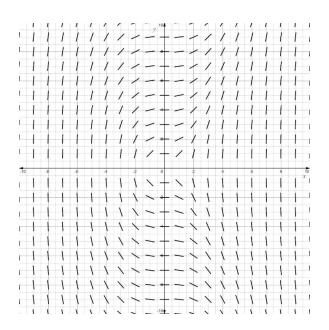
QUESTION 6

In the diagram below, AOB is a diameter of the circle ABC with centre O. Point C lies on the circumference of the circle.

If $\overrightarrow{OC} = \mathbf{r}$ and $\overrightarrow{BC} = \mathbf{s}$, to which of the following is \overrightarrow{AC} equal?

- A. r + 2s
- В. **r** 2**s**
- C. 2r + s
- D. 2r s

© State of New South Wales (Department of Education), James Ruse Agricultural High School, 2024. This material may be used for noncommercial, educational purposes only.


QUESTION 7

Which of the following is the unit vector perpendicular to $\mathbf{p} = -6\mathbf{i} + 2\mathbf{j}$?

A. $\frac{3}{\sqrt{10}}i + \frac{1}{\sqrt{10}}j$ B. $\frac{1}{\sqrt{10}}i + \frac{3}{\sqrt{10}}j$ C. $\frac{1}{\sqrt{10}}i + \frac{-3}{\sqrt{10}}j$ D. $\frac{-3}{\sqrt{10}}i + \frac{1}{\sqrt{10}}j$

QUESTION 8

Which of the following differential equations could represent the slope field below?

A.
$$\frac{dy}{dx} = \frac{x}{y^2}$$

B.
$$\frac{dy}{dx} = \frac{x^2}{y}$$

C.
$$\frac{dy}{dx} = -\frac{x^2}{y}$$

D.
$$\frac{dy}{dx} = -\frac{x}{y^2}$$

© State of New South Wales (Department of Education), James Ruse Agricultural High School, 2024. This material may be used for noncommercial, educational purposes only.

QUESTION 9

There are 11 points in a plane such that 4 of the points are collinear. Which of the following gives the number of lines that may be formed such that those lines pass through at least two of the 11 points?

- A. 55
- B. 49
- C. 50
- D. 52

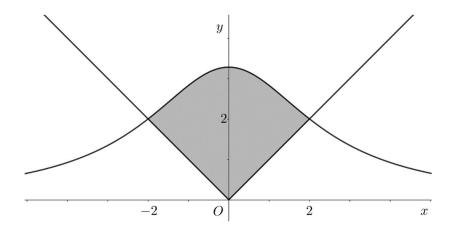
QUESTION 10

For the binomial expansion of $(2 + kx)^7$, where k > 0 is a constant, it is given that the coefficient of x^2 is six times the coefficient of x. Which of the following is the value of k?

A. $\frac{1}{144}$ B. $\frac{1}{4}$ C. 4 D. 144

End of Section A

SECTION B


QUESTION 11 Start a new page (9 marks)

- a) Given a = 3i + 2j and b = -2i + j, find:
 - i. $a \cdot b$.
 - ii. $\operatorname{proj}_{\overset{i}{\underset{\sim}{}}} a$ and express your answer in the form, $\underset{\sim}{xi + yj}$.
- b) Ten unbiased, six-sided dice are tossed simultaneously. Write an expression for the probability of exactly three of them landing with the number 5 facing up.
- c) Given $P(x) = 3x^3 2x^2 + x 3$ has zeroes α, β and γ :
 - i. Write down the value of $\alpha\beta\gamma$. 1

ii. Hence, or otherwise, find the value of
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
. 1

d) It is given that the curves y = |x| and $y = \frac{82}{25+4x^2}$ intersect at the points (2, 2) and (2, 2) Final the second s

(-2, 2). Find the area bounded by the curves, as indicated in the diagram below. Give your answer correct to one decimal place.

 a) Three adults and five children go to the cinema and are seated next to each other in a row of eight seats. How many ways can these eight people sit so that at least two of the adults sit next to each other?

b) Find the term independent of x in the expansion of
$$\left(x + \frac{1}{x}\right)^5 \left(2x^2 - \frac{3}{x}\right)^6$$
. 3

c) A thermometer, reading 24 °C, is brought into a room whose temperature is 5 °C. At five minutes, the thermometer registers 18 °C. Assume that the temperature *T* of the thermometer decreases at a rate proportional to the difference between the temperature on the thermometer and the temperature of the room; that is:

$$\frac{dT}{dt} = k(T-5)$$

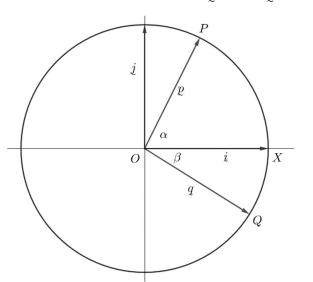
- i. Show that $T = 5 + Ae^{kt}$ is a solution to the differential equation above. 1
- ii.How long will it take for the thermometer to read 10°C?3Give your answer correct to the nearest minute.

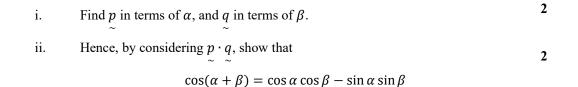
QUESTION 13 Start a new page (9 marks)

a) Find the values of *s* and *t* in the following sum of binomial coefficients:

$$\binom{2022}{146} + \binom{2022}{147} + \binom{2023}{1875} = \binom{s}{t}$$

- b) An unbiased, regular coin is tossed 30 times. Let the random variable \hat{p} be the proportion of heads obtained amongst the 30 tosses.
 - i. Justify mathematically why this distribution may be approximated using the 1 normal distribution.


ii. Hence approximate the value of
$$P\left(\frac{12}{30} \le \hat{p} \le \frac{16}{30}\right)$$
. 3


c) Prove, by mathematical induction, that n³ + (n + 1)³ + (n + 2)³ is divisible
3
by 9 for all n ≥ 1, n ∈ Z.

Marks

a) Consider the unit circle around the origin *O* in the diagram below, with i_{a} and j_{a}

representing the standard basis unit vectors in the horizontal and vertical directions respectively. The points P and Q lie on the unit circle such that P is in the first quadrant and Q is in the fourth quadrant. The angles POX and QOX have measures α and β respectively, where X is the point (1,0). Let $\overrightarrow{OP} = p$, $\overrightarrow{OQ} = q$.

b) By using an appropriate *t*-formula substitution, solve the equation

$$3\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right) = -3$$
 for $0 \le \theta \le 2\pi$

2

1

2

1

3

a)

i. Sketch the graphs of y = |x² - 3x + 2| and y = 2 on the same plane.
ii. Hence, or otherwise, solve |x² - 3x + 2| > 2.

b) Let θ be the measure of an acute angle.

i. Using a suitable expansion of sin 6θ, show that
(sin 2θ)³ - ³/₄ sin 2θ + ¹/₄ sin 6θ = 0
ii. If x = 4 sin 2θ and x³ - 12x + 8 = 0, show that sin 6θ = ¹/₂.
iii. Use your result in (ii) to find the value of

$$\left(\sin\frac{\pi}{18}\right)^2 + \left(\sin\frac{13\pi}{18}\right)^2 + \left(\sin\frac{25\pi}{18}\right)^2$$

10 © State of New South Wales (Department of Education), James Ruse Agricultural High School, 2024. This material may be used for noncommercial, educational purposes only.

- a) Liquid is poured into a large vertical circular cylinder at a constant rate of 1600 cm³s⁻¹. At the same time, water is leaking from a hole in the base of the cylinder at a rate that is proportional to the square root of the height of the liquid present in the cylinder. It is given that the area of the circular cross-section of the cylinder is 4000 cm².
 - i. Show that at time t seconds, the height h cm of liquid in the cylinder satisfies the differential equation

$$\frac{dh}{dt} = 0.4 - c\sqrt{h}$$

where *c* is a constant.

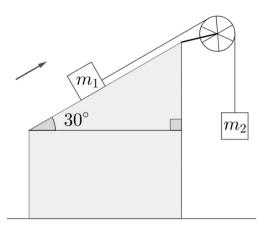
When h = 25 cm, water is leaking from the hole at a rate of $400 \text{ cm}^3 \text{s}^{-1}$.

- ii. Show that c = 0.02.
- iii. Show that the time taken to fill the cylinder from being empty to having a height of 100 cm is given by the integral:

$$\int_{0}^{100} \frac{50}{20 - \sqrt{h}} dh$$

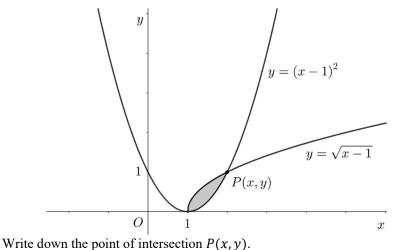
3

2


- iv. Using the substitution $\sqrt{h} = 20 x$, or otherwise, evaluate the integral in (iii). Give your answer correct to the nearest second.
- b) By use of a product-to-sum identity, find:

$$\int \cos 2x \sin 3x \, dx$$

QUESTION 17 Start a new page (8 marks)


i.

a) Consider the two-body construction shown in the diagram below. A crate, having mass $m_1 = 2500$ kg, lies on a smooth, inclined plane. It is connected by a light, inextensible cable through a smooth pulley to a second crate having mass $m_2 = 4000$ kg. The plane has an angle of inclination of 30°.

Taking the upward direction of the incline as positive, find the acceleration of m_1 in terms of g in its simplest form.

b) The graphs of $y = (x - 1)^2$ and $y = \sqrt{x - 1}$ intersect at (1,0) and P(x, y) as shown in the diagram below.

ii. Hence find the volume of the solid of revolution formed by rotating the region bounded by $y = \sqrt{x-1}$ and $y = (x-1)^2$ about the y-axis.

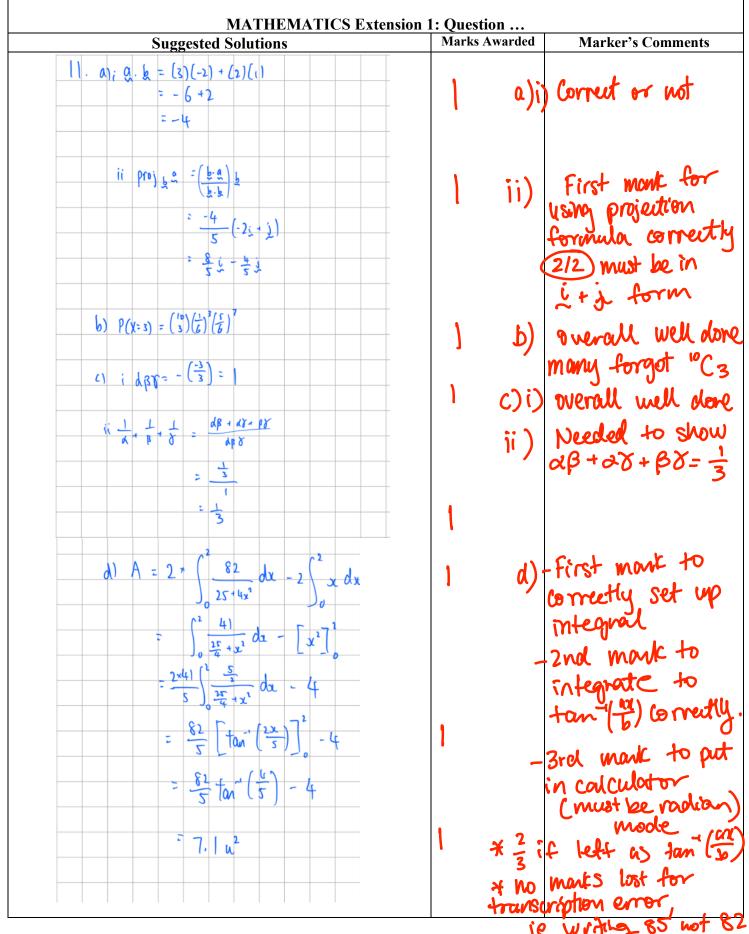
c) Show that
$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) = 3\tan^{-1}\left(\frac{x}{a}\right)$$
, where $a > 0, -\frac{a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$.

NB: Any identity used that is not listed on the reference sheet must be derived.

End of paper

12

© State of New South Wales (Department of Education), James Ruse Agricultural High School, 2024. This material may be used for noncommercial, educational purposes only.

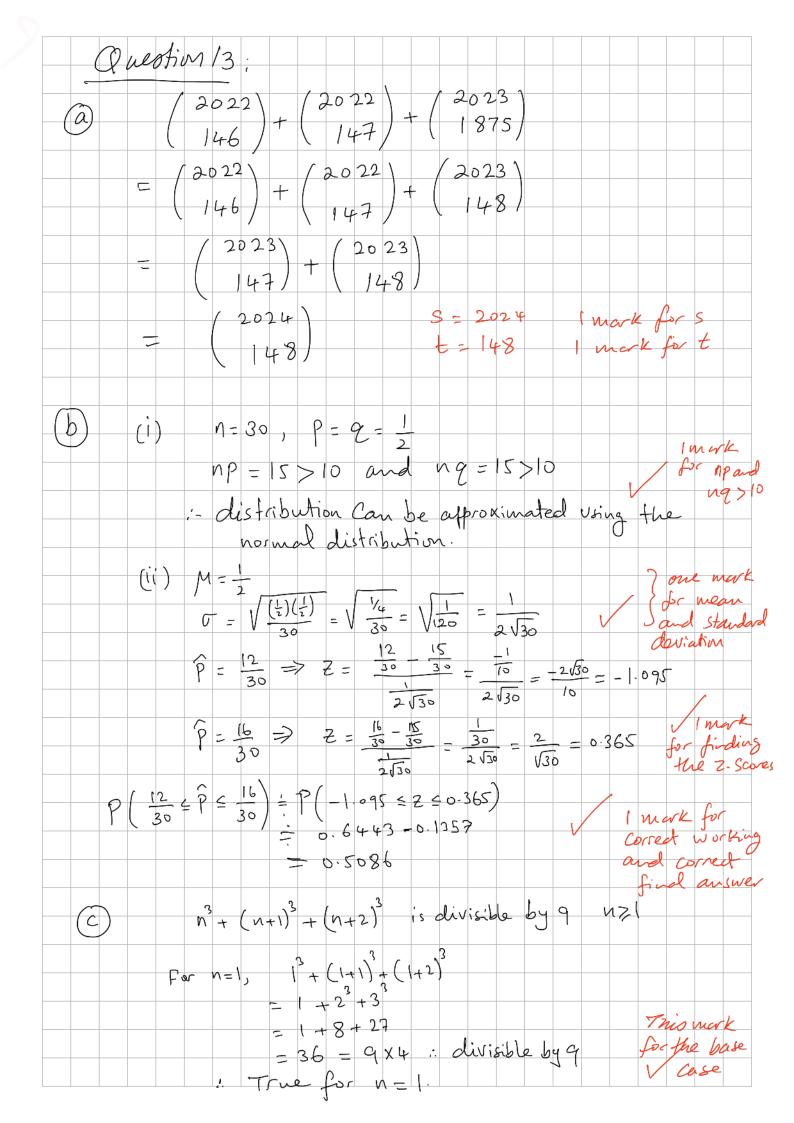

Marks

2

1

Multiple Choice Answers

- 1. A
- 2. B
- 3. C
- 4. C
- 5. C
- 6. D
- 7. C
- 8. B
- 9. C
- 10. C


\\mercury\staffhome\$\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template.doc

QUESTION 12 a) 8 people can sit in 8! ways. V Sit the 5 children. There are 6 spaces: 5! If no adults sit together they can choose spaces in 6×5×4 ways. .: At least 2 adults sit together in 8! - 6x5x4 x 5! = 25 920 Ways. $\frac{\left(x+\frac{1}{\pi}\right)^{5}\left(2x^{2}-\frac{3}{\pi}\right)^{6}}{\left(5c_{0}x^{5}+5c_{1}x^{5}x^{1}+...,5c_{k}x^{5-k}x^{-k}+...+5c_{5}x^{-5}\right)} \text{ one binom} \\ \times \left(6c_{0}\left(2x^{2}\right)^{6}+6c_{1}\left(2x^{2}\right)^{5}\left(-3x^{-1}\right)+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n}\left(2x^{2}\right)^{6-n}\left(-3x^{-1}\right)^{n}+...+6c_{n$ 6) $= \left(\dots {}^{5c}, \chi^{3} + \dots + {}^{5c}, \chi^{-3} + \dots \right) \left(\dots {}^{6c}, \chi^{(2)}, (-3)^{5}, \chi^{3} + \dots + {}^{6c}, \chi^{(2)}, (-3)^{5}, \chi^{3} + \dots \right)$ Powers of n $= \dots + {}^{5}c_{4}{}^{6}c_{3}{}^{2}(-3)^{3} + {}^{5}c_{1}{}^{6}c_{5}{}^{2}(-3)^{5} + \dots$ ()(12 ". Term independent of x is - 36180 3 c) i) LHS = dT af $=\frac{d}{dt}(5+Ae^{kt})$ You CANNOT do this: = kAekt $\frac{dt}{T=0} = kdt$ $= k(5 + Ae^{kt} - 5)$ $\ln|\tau-5| = kt + C$ = k(T-5) $|T-5| = e^{c}e^{k}$ $T-5 = \pm e^{c}e^{kt}$ = RUS Let $A = \pm e^{c}$ $T-5 = Ae^{kt}$

A B S		Student Number	SOLUTIONS
- Anonala	QUESTION 12 cont.		
_	c) ii) $t=07$		
	$T=245^{=7}$ 24 = 5 + Ae		
<u>.</u>	A = 19		
1	: T=5+19ekt		
-	t = 5 T=18 J=> 18 = 5 + 19 e^{5k}		
-	$\frac{13}{19} = e^{5k}$		
	$h = \frac{1}{2} \ln \frac{13}{13}$	/	
-	$k = \frac{1}{5} \ln \frac{13}{19}$ $T = 5 + 19e^{\frac{5}{5} \ln \frac{13}{19}}$		
-	T-107		
-	4-7 1 10-5+19 = 5 ln 13		
-	$\frac{5}{19} = e^{\frac{5}{5}\ln\frac{13}{19}}$		
-	$t \ln \frac{13}{19} = 5 \ln \frac{5}{19}$		
-	$t = 5 \ln \frac{5}{19}$		
-	In 13		
	= 18 min (nearest mir)	
1			

Assume it is true for
$$n = k$$
, $K \ge 1$, $k \in \mathbb{Z}$
 $k^{3} + (k+1)^{3} + (k+2)^{3}$ is divisible by q
 $\therefore \exists m \in \mathbb{Z} \land k^{2} + (k+1)^{2} = qm, m \ge 1, m \in \mathbb{Z} \land (\#)$
Prove it $\exists cue$ for $n = k+1$
 $(k+1)^{3} + (k+2)^{3} + (k+3)^{3}$ is divisible by q
 $(k+1)^{3} + (k+2)^{3} + (k+3)^{3}$ Using $(\#)$
 $\equiv qm - k^{3} + (k+3)^{3}$ Using $(\#)$
 $\equiv qm + (k+3)^{2} - k^{3}$
 $\equiv qm + (k+3)^{2} - k^{3}$
 $\equiv qm + 3 (k^{2} + 6k + q + k^{2} + 3k + k^{2})$
 $\equiv qm + 3 (k^{2} + 6k + q)$
 $\equiv qm + q (k^{2} + 3k + q)$
 $\equiv qm + q (k^{2} + 3k + q)$
 $\equiv q(m + k^{2} + 3k + q)$
 $\equiv q(m + q(k^{2} + 3k + q)$
 $\equiv q(m + q(k^{2$

a)

.

i.

$$p = \cos \alpha \, \underbrace{i}_{\alpha} + \sin \alpha \, \underbrace{j}_{\alpha} \operatorname{or} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} \quad 1 \text{ mark}$$

$$q = \cos \beta \, \underbrace{i}_{\alpha} - \sin \beta \, \underbrace{j}_{\alpha} \operatorname{or} \begin{pmatrix} \cos \beta \\ -\sin \beta \end{pmatrix} \quad 1 \text{ mark}$$

ii.

$$p \cdot q = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad 1 \text{ mark}$$

$$p \cdot q = \left| p \right| \left| q \right| \cos(\alpha + \beta)$$

$$= \cos(\alpha + \beta) \qquad \left(\left| p \right| = \left| q \right| = 1 \right) \quad \text{This must be acknowledged to get the mark!!!!}$$

$$\therefore \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad 1 \text{ mark}$$

b)

let
$$t = \tan \frac{\theta}{4}$$
 1 mark $\theta \in [0, 2\pi]$
 $3\left(\frac{1-t^2}{1+t^2}\right) - \frac{2t}{1+t^2} = -3$
 $3 - 3t^2 - 2t = -3 - 3t^2$
 $2t = 6$
 $t = 3$ 1 mark
 $\tan \frac{\theta}{4} = 3$
 $\frac{\theta}{4} \approx 1.24$
 $\theta \approx 5.00$ 1 mark
Test for $\theta = 2\pi$
LHS = $3 \cos \pi - \sin \pi$
 $= 3(-1) - 0$
 $= -3$
 $=$ RHS
 $\therefore \theta = 5.00 \text{ or } 2\pi$ 1 mark

Note:

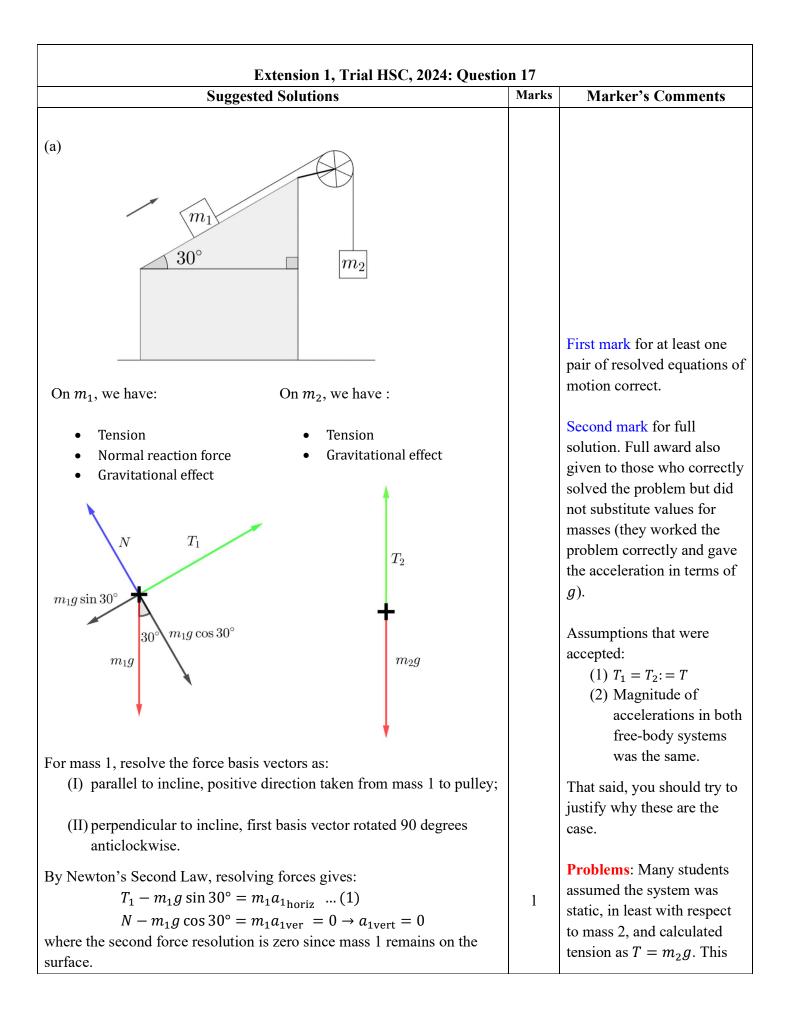
- If you make the wrong substitution at the beginning, the maximum you can get is 2 marks

- If you leave your answer in terms of $4 \tan^{-1} 3$, you do not receive the maximum marks.

2024 Y12 Extension 1, Task 4 (Trial) Qu Suggested Solutions	estion 15 Marks	Marker's Comments
$\frac{(J_{\text{iestion 15}})}{(a) (i)}$		Awl. y=2 and correct intercepts of transformed parabola Au2 correct solution
(ii) x<0 or x73		Awl connect solution
b) (i) $\sin 6\theta = \sin (4\theta + 2\theta)$ = $\sin 4\theta \cos 2\theta + \cos 4\theta \sin 2\theta$ = $2\sin 2\theta \cos^{2}2\theta + (1 - 2\sin^{2}2\theta) \sin 2\theta$ = $2\sin 2\theta (1 - \sin^{2}2\theta) + \sin 2\theta$ - $2\sin^{2}2\theta$ = $3\sin 2\theta - 4\sin^{2}2\theta$ = $3\sin^{2}2\theta - 4\sin^{2}2\theta$ = $\sin^{2}2\theta - \frac{3}{4}\sin^{2}\theta + \frac{1}{4}(\sin^{2}\theta)$ = $\sin^{2}2\theta - \frac{3}{4}\sin^{2}\theta + \frac{1}{4}(3\sin^{2}\theta)$ = $\sin^{2}2\theta - \frac{3}{4}\sin^{2}\theta + \frac{1}{4}(3\sin^{2}\theta)$ = $\sin^{2}2\theta - \frac{3}{4}\sin^{2}\theta + \frac{1}{4}(3\sin^{2}\theta)$ = $\sin^{2}2\theta - \frac{3}{4}\sin^{2}\theta + \frac{1}{4}\sin^{2}\theta - \sin^{2}\theta$	- ५ = रे ले	Awl connect whe of compound ange for mile for sin (40+20) or connect downe angle formula for sin (2×30) Aw2 (connect b) progress to the nesult required.
(i) $x^{3} - 12x + 8 = 0$ and $x = 4 \sin 26$ $4^{3} \sin^{2} 26 - 48 \sin 26 + 8 = 0$ 60 : $\sin^{3} 26 - \frac{3}{4} \sin 26 + \frac{1}{8} = 0$ $-\frac{1}{4} \sin 66 = -\frac{1}{8}$ $-\frac{1}{8} \sin 66 = \frac{1}{2}$		Aul correct substitution and simplificati from pati).

2024 Y12 Extension 1, Task 4 (Trial) Qu Suggested Solutions	Marks	Marker's Comments
If $\sin 6\theta = \frac{1}{2}$		
$6\theta = n\pi + (-1)^n \sin^{-1}(\frac{1}{2}) n \in \mathbb{Z}$		
$1.24 = n \frac{\pi}{3} + (-1)^{n} \frac{\pi}{18}$		
$= (m + (-1)^{n}).T$		
Pistoned solutions when m=0,1,4 (all		
others are repititions)		And Finding the
$T_{P} = 4 \sin \pi + 4 \sin \frac{13\pi}{18}$ and $4 \sin \frac{25\pi}{13}$		Aw1. Finding the distinct roots of the given culic via solving sinbo = f
$Z_{x}: 4 \sin \frac{\pi}{18} + 4 \sin \frac{13\pi}{18} + 4 \sin \frac{25\pi}{18} = -\frac{1}{3}$		ria civice orv
r_{4} : r_{18} : r_{18} + r_{18} : r_{18} + r_{18} : r_{18} = 0		
ÉXB: 1621- II Sin KIT + 1620 II - 18		Ausz find expression
+ 1651 18 18	1	for both the sum of roots
		taken two at time
$\frac{1}{18} \sin \frac{13\pi}{18} + \sin \frac{13\pi}{18} + \sin \frac{15\pi}{18} + \sin \frac{15\pi}{18} + \sin \frac{13\pi}{18} = 18$	13	
$= -\frac{1}{2}$	2	
	a 1	
	Į	
SINT + Jin 13T + Sin 25T		
$= \left(s_{1}^{1} + s_{1}^{1} +$		
- T (13# + Sin#	いかど	
$-2\left(si\sqrt{\frac{3\pi}{18}}si\sqrt{\frac{3\pi}{18}}+si\sqrt{\frac{3\pi}{18}}\right)$ $+si\sqrt{\frac{3\pi}{18}}si$	2211	
$= 0^{-} - 2(-\frac{3}{4})$	18	Auiz Connect solution (most us patil)
		solution
$=\frac{3}{2}$		(must use port ii)

.


Trials 2024 - Ext 1 - 016

MATHEMATICS Extension 1 : Question	on	
Suggested Solutions	Marks	Marker's Comments
a)i) Show that at time t seconds, the he h cm of liquid in the cylinder Botisfies the differential eqn. $\frac{dv}{dt in} = \frac{1600 \text{ cm}^3/\text{s}}{\text{poured in}} = \frac{A = 4000 \text{ cm}^3}{\text{dt in}}$ Water leaking out & Th (direct voriation) $\frac{dv}{dt} = \frac{dv}{dt} = k \sqrt{h}$		Poorly done ! Many students did $\frac{dV}{dt} = \frac{1600}{4000} = \frac{\text{cm}^3/\text{s}}{\text{cm}^2} \text{ or}$ $\frac{dV}{dt} = 0.4 - C \sqrt{h}$
$V: \pi r^{3}h$ $V: \pi r^{3}h$ $\int how \frac{dh}{dt} = ?$ $\frac{dV}{dh} = \pi r^{3} = 4000 \text{ cm}^{3} \qquad \frac{dh}{dt} = \text{water in - m}}{\frac{dh}{dt} = 1600 - k\sqrt{2}}$ $\frac{dV}{dt} = \frac{dh}{dt} \times \frac{dV}{dh}$ $= (1600 - k\sqrt{2}h) \times 4000 \text{ into}$ $= (0.4 - \frac{k}{4000}\sqrt{2}h)$ $= 0.4 - C\sqrt{2}h \text{ where } c = \frac{k}{4000}$ $ii)$ $\int how (z = 0.02$	rrect { Also Same	X dh = ant of woler in area of base X change of dt in woter <u>I</u> x 1600 A x 1600 A tonce! Using the concept from (ai)
$ \begin{pmatrix} h = 25 & \frac{dt}{dt} & out = 400 \text{ cm} t = 10 \\ \frac{dv}{dt} = V \text{ in } - V \text{ out } & \frac{dh}{dv} = \frac{1}{4000} \\ \frac{dv}{dt} = \frac{1}{200} \text{ cm}^3/\text{s} \\ \frac{dh}{dt} = \frac{dv}{dt} \times \frac{dh}{dv} (\text{It's relate}) \\ \frac{dh}{dt} = \frac{1}{200} \times \frac{1}{4000} $	cfe do f4	ate of change !!!)
	d mo	11 just No exploration s rk because you nistake as pt(i)

MATHEMATICS Extension 1 : Questi		Madazza
Suggested Solutions	Marks	Marker's Comments
Mistokes or fudging for aii) that w	es en 1	orded CFE MORE,
$c \times 4 000 \sqrt{25} = 400$		
$C \sqrt{h} = \frac{400}{4000}$		
$S_{C} = 0^{1}$		
$\frac{dh}{dt} = 0.4 - CJG$ $\frac{0.3}{2} = 0.4 - CJ25$		
NOT AWARDED MARKS		
$) \frac{dh}{dt} = \frac{1}{10h}$ $s = \frac{400}{-s}$	o · ≠	<i> 7</i> 9· 92
) c- k / sc:	0.5	
$(600 - k \sqrt{25} = 400$	<u>0.25</u> =	2
k = 240 (c = 0.02) somehow 7) 400 = 4000	(0.4~)	(JA)=0.1
8) 400 = 0.4	- 50	= - 79 .92 C= 1
a $c\sqrt{h} = 40$	0 ° ° 8'	°
- 5 C = <u>fo</u> 4000 which gives 0.02 6 uf NOP sure how E becomes C	c = -	0 0 hot
E becomes C		
) Winner of fudging ä		
4000 × 0.4- 5C = 1600- 4000C× 5 (ifsolv	ed,	(= 0.02)
/600 - SC = /600 - 20000C	> min	1610 wing !!
Winner of 1000-4000cx 5 (if solv 4000 x 0.4 - 5c = 1600 - 4000cx 5 (if solv 1600 - 5c = 1600 - 20000c 0 = -20000cf 5c Really?		-

MATHEMATICS Extension 1 : Question	n	
Suggested Solutions	Marks	Marker's Comments
aiii) Show $\int_{0}^{100} \frac{50}{20-5h} dh$ $\frac{dh}{dt} = 0.4 - 0.02\sqrt{h}$ $\frac{dt}{dt} = \frac{1}{0.4 - 0.02\sqrt{h}} dh$	ie	h= 100, t= T h= 0, t= 0
$\int dt : \int \frac{1}{0.4 - 0.0256} dh$ $\int \frac{t}{7} \int \frac{1}{20} \frac{50}{20 - 56} df$ $\frac{1}{7} \int \frac{100}{7} \frac{50}{20 - 56} df$	hove to	to show this get I mork
aiv) use $\sqrt{h} = 20 - \chi$ or otherwise, to coold the integral in (iii) (nearest second) $\int_{20}^{10} \frac{50}{20 - (20 - \chi)} \times (-2(20 - \chi)) d\chi \sqrt{h} = 20 - \chi \\ \chi = 20 - \sqrt{h} \\ \frac{d\chi}{dk} = -\frac{1}{2} h$ $\int_{20}^{10} \frac{50(2\chi - 40)}{\chi} d\chi \qquad = -\frac{1}{2} h$ $= \int_{20}^{10} \frac{2}{\chi} - \frac{40}{\chi} d\chi \qquad = 0$ $= (38.6 \cdot 29 \text{ secs}) \text{ Not mony students got}$	whe - 1/2 = -	$\frac{-1}{2\sqrt{20-x}}$

Suggested SolutionsMarksMarks6)Using product to sum identity r findThe 1st mork $for 2x gin 3x dxwere overweld ifr 1 frin 5x - Jin (-x) dxthe product to sumr 2 frin 5x + Jin x dxwere overweld ifr 2 frin 5x + Jin x dxfor energianr 2 frin 5x + Jin x dxfor the nextr 2 frin 5x + Jin x dxfor the nextr 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin x dxfor the grotion.r 2 frin 5x - Jin 5x + Jin 5$
$\int \cos 2x \sin 3x dx$ $= \frac{1}{2} \int \sin 5x - \sin(-x) dx$ $= \frac{1}{2} \int \sin 5x + \sin x dx$ $= \frac{1}{2} \int \sin 5x + \sin x dx$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$ $= \frac{1}{2} \left[-\frac{1}{5} \cos 5x - \cos x \right] + C$

For mass 2, basis vectors for forces will be as:

- (I) Positive horizontal, left-to-right.
- Positive vertical, downward (since we are anticipating a certain direction given the setup, but it is not critical to make the downward direction positive).

Then, resolving forces on mass 2:

$$m_2g - T_2 = m_2a_{2\text{ve}} \quad \dots (2)$$

$$0 = m_2a_{2\text{horiz}} \rightarrow a_{2\text{horiz}} = 0$$

Now, since the cable is inextensible, the tension T_1 on mass 1 exerted by the cable is the same (in magnitude) as that exerted on mass 2, T_2 . Hence

$$T_1 = T_2$$

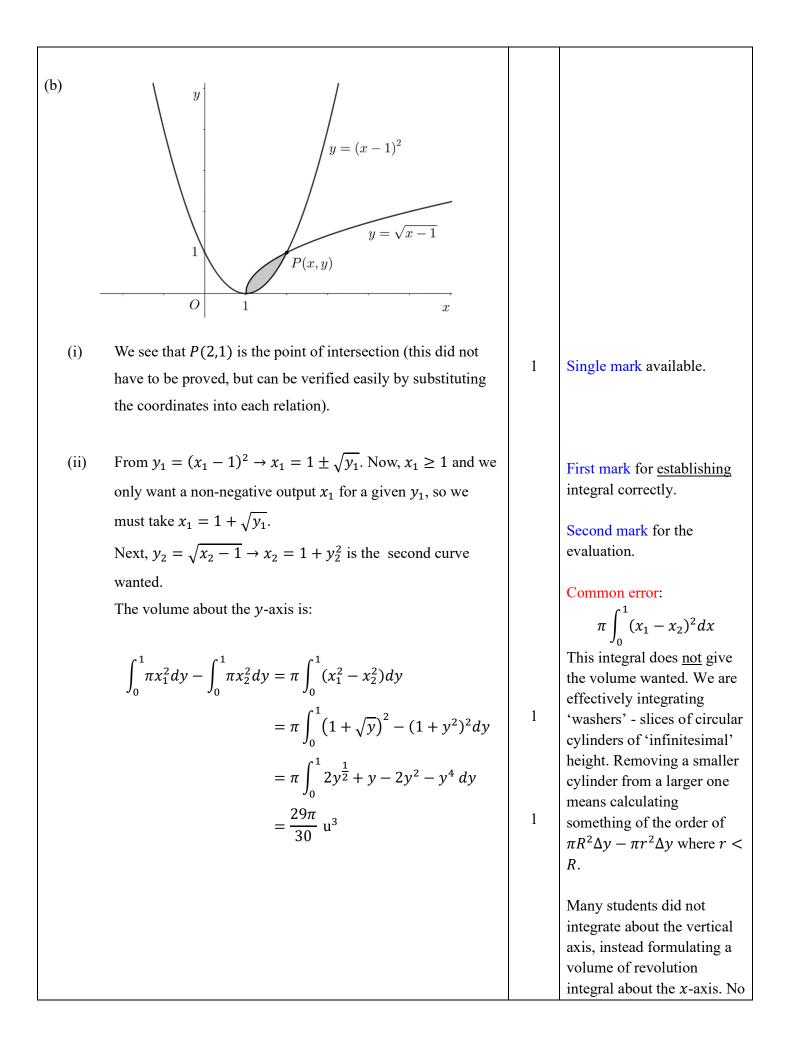
and the accelerations (their magnitudes) of the masses must be the same (if not, the cable would compress or break, depending on which mass has the greater acceleration). This implies $a_{1\text{horiz}} = a_{2\text{vert}} = a$.

Hence, we have from (1) and (2):

$$T - \frac{1}{2}m_1g = m_1a \quad ... (3)$$
$$m_2g - T = m_2a \quad ... (4)$$

Add (3) and (4):

$$\left(m_2 - \frac{1}{2}m_1\right)g = (m_1 + m_2)a$$


and so

$$a = \frac{(2m_2 - m_1)}{2(m_1 + m_2)}g = \frac{11}{26}g$$

given $m_1 = 2500$ kg, $m_2 = 4000$ kg.

tension was then used for m_1 in a situation where a static system was not assumed...this is inconsistent with the information in the problem. It is also wrong to assume special physical situations without any information (nothing in the question implied that either of the masses were static relative to the incline, just the opposite).

Others established vectors on the free bodies of differing bases and then added those vectors. You can only add components of vectors if those vectors have the same basis.

Solutions continue, next page	 marks were awarded in this case for the following two reasons: (1) There was a fundamental misconception about what integration would give the appropriate volume. (2) There was no need to interpret the problem from the perspective of another axis and ∴ no need to conduct the extra work needed to express <i>x</i> as a function of <i>y</i>. It can also be argued that the integration is marginally simpler. Although you need to perform the integration to find the volume, you're not being assessed on the integration itself; the integral here, after correct setup, is a 2 Unit integral.
	integral here, after correct setup, is a 2 Unit

(c) We are required to prove that

$$\tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) = 3\tan^{-1}\left(\frac{x}{a}\right)$$

where a > 0, $-\frac{a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$. The equation suggests it's easiest to let $\theta = \tan^{-1}\left(\frac{x}{a}\right)$ and to then manipulate to see where we arrive. The problem also requires us to look at $3\tan^{-1}\frac{x}{a}$, so $3\tan^{-1}\frac{x}{a} = 3\theta$.

Consider then

$$\tan(3\theta) = \frac{(\tan(2\theta) + \tan\theta)}{1 - \tan(2\theta)\tan\theta}$$

Let $t = \tan \theta$. Then

 $\tan(3\theta) = \frac{\frac{2t}{1-t^2} + t}{1 - \left(\frac{2t}{1-t^2}\right)t} = \frac{3t - t^3}{1 - 3t^2} \dots (1)$

Now,

$$t = \tan \theta = \tan \left(\tan^{-1} \left(\frac{x}{a} \right) \right) = \frac{x}{a}$$

so, substituting into (1), we have

$$\tan(3\theta) = \frac{3\frac{x}{a} - \left(\frac{x}{a}\right)^3}{1 - 3\left(\frac{x}{a}\right)^2} = \frac{3a^2x - x^3}{a^3 - 3ax^2}$$

Now, in order to release 3θ from tan by applying arctan directly, we need to ensure that $-\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$. We have:

$$-\frac{a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}} \Rightarrow -\frac{1}{\sqrt{3}} < \frac{x}{a}$$

$$< \frac{1}{\sqrt{3}} \quad (\because a > 0, \text{ direction of inequality maintained})$$

$$\Rightarrow \tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) < \tan^{-1} \left(\frac{x}{a} \right)$$

$$< \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) \quad (\because \arctan \text{ is monotonic increasing on its domain})$$

$$\Rightarrow -\frac{\pi}{6} < \tan^{-1} \left(\frac{x}{a} \right) < \frac{\pi}{6}$$

$$\Rightarrow -\frac{\pi}{2} < 3 \tan^{-1} \left(\frac{x}{a} \right) < \frac{\pi}{2}$$

$$\Leftrightarrow -\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$$

First mark for logical, productive start. This typically included picking one side of the identity to be proved and working with tangent + compound angle formula.

1

1

Second mark for proving the relation or equivalent.

The third mark required more than simply applying arctan to both sides of the last expression. Candidates needed to prove that $3\theta \in$ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ in order for it to follow that $\tan^{-1}(\tan 3\theta) = 3\theta$. For example, although it is the case that $\tan \frac{\pi}{3} = \tan \frac{4\pi}{3}$ it is **not** the case that

 $\tan^{-1}\tan\frac{\pi}{3} = \tan^{-1}\tan\frac{4\pi}{3}$
implies

Hence we may write:

$$\tan^{-1}(\tan(3\theta)) = \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right)$$
$$\Leftrightarrow 3\theta = \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right)$$
$$\Leftrightarrow 3\tan^{-1}\left(\frac{x}{a}\right) = \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right)$$

 $\frac{\pi}{3} = \frac{4\pi}{3}$

Hence, students must have used the information about *a* to **prove** that

$$-\frac{\pi}{2} < 3 \tan^{-1} \frac{x}{a} < \frac{\pi}{2}$$

1

follows, permissioning the final moves here.